Rational Numbers---Adding Fractions With Like Denominators.

A. <u>In Words:</u> To **add** fractions with *like* denominators, add the numerators and write the *sum* over the same denominator.

B. <u>In Symbols:</u> For fractions $\frac{a}{c}$ and $\frac{b}{c}$, where $c \neq 0$, $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$. C. <u>Example:</u> $\left(\frac{2}{5}\right) + \left(\frac{1}{5}\right)_{\text{becomes}} \frac{2+1}{5}_{\text{which produces the result}} \frac{3}{5}_{\text{which produces the result}} \frac{3}{5}_{\text{which produces the result}} \frac{3}{5}_{\text{which produces the result}}$

Rational Numbers---Subtracting Fractions With Like Denominators.

A. <u>In Words:</u> To subtract fractions with like denominators, subtract the numerators and write the *difference* over the *same denominator*.

Rational Numbers---Adding and Subtracting Unlike Fractions (When the Denominators are NOT the Same).

- A. To add or subtract fractions with unlike denominators:
 - 1. Find the Least Common Denominator (LCD).
 - 2. Rename the fractions with a common denominator.
 - 3. Add or subtract the numerators.
 - 4. Place the sum or difference over the common denominator.
 - 5. Simplify.

Rational Numbers---The Least Common Denominator (LCD) Defined.

- A. You find the LCD between two or more fractions by finding the Least Common Multiple (LCM) of the denominators of the fractions.
- B. The Least Common Multiple.
 - 1. A *multiple* of a number is a *product* of that number and any *whole* number.
 - 2. Multiples that are shared by two or more numbers are called common multiples.
 - 3. The **least** of the common **<u>non-zero</u>** multiples of two or more numbers is called the **Least Common Multiple (LCM)**.

Rational Numbers---Finding The Least Common Denominator (LCD).

A. You can find the LCM by making a chart:

x	1*x	2*x	3*x	4*x	5*x	6*x
0	0	0	0	0	0	0
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

1. Example: Find the Least Common Denominator for 1, 2, 3, & 6

The LCM of 1, 2, 3, & 6 is 6.

I. <u>IMPORTANT REVIEW:</u> Prime Numbers

- A. A **prime number** is a whole number greater than one that has **exactly two** factors, 1 and itself.
- B. Prime Factorization.
 - 1. When a positive integer (other than one) is expressed as *a product of factors that are all prime*, the expression is called the **prime factorization**.

Rational Numbers---Finding The Least Common Denominator (LCD).

- A. You can find the LCM by finding the Prime Factorization of each Number.
 - 1. Find the common denominators and add: $\frac{3}{8} + \frac{5}{12}$
 - a. Find the prime factors of each denominator. Express these factors as powers.

Number	Prime Factors	Powers
8 =	2.2.2	2^{3}
12 =	2.2.3	$2^{2} \cdot 3$

b.. List all the powers in increasing order of their exponents, using each **only once.**

$$2^{2} \cdot 2^{3} \cdot 3 = 96$$
 The Least Common Multiple (LCD) will be 96.

- c. Multiply the numerator and the denominator by the factor needed to change the denominator into the LCD (96)
 - 1. For the fraction $\frac{3}{8}$ find how many times 8 goes into 96. Multiply this number by both the numerator and the denominator:

a.
$$\frac{96}{8}$$
 = 12 so $\frac{3 \cdot 12}{8 \cdot 12} = \frac{36}{96}$

2. For the fraction $\frac{5}{12}$ find how many times 12 goes into 96. Multiply this number by both the numerator and the denominator:

a.
$$\frac{96}{12} = 8$$
 so $\frac{5 \cdot 8}{12 \cdot 8} = \frac{40}{96}$

2. So
$$\frac{3}{8} + \frac{5}{12} = \frac{36}{96} + \frac{40}{96} = \frac{36+40}{96} = \frac{76}{96} = \frac{19}{24}$$

1. A short-cut way to find a common denominator is to *multiply the numerator* & *denominator of the first fraction by the denominator of the second fraction. Then multiply the numerator* & *denominator of the second fraction by the denominator of first fraction.*

a. Example
$$\left(\frac{2}{5}\right) + \left(\frac{1}{11}\right)_{\text{becomes}} \left(\frac{11\cdot 2}{11\cdot 5}\right) + \left(\frac{5\cdot 1}{5\cdot 11}\right)$$

which becomes $\left(\frac{22}{55}\right) + \left(\frac{5}{55}\right)_{\text{which}} \left(\frac{22+5}{55}\right)_{\text{becomes}} \left(\frac{27}{55}\right)$

1. Divisibility Rules:

A number is divisible by:

- a. 2 if the ones digit is divisible by 2
- b. 3 if the sum of its digits is divisible by 3
- c. 4 if the last two digits are divisible by 4
- d. 5 if the ones digit is 0 or 5
- e. 6 if the number is divisible by 2 and 3
- f. 8 if the last three digits are divisible by 8
- g. 9 if the sum of all the digits is divisible by 9
- h. 10 if the ones digit is 0

Simplifying Fractions---Using Prime Factors.

- A. A fraction can be simplified two ways:
 - 1. Break each number into it's prime factors.

a. Example 1: $\frac{6}{9}$ becomes $\frac{2\cdot 3}{3\cdot 3}$.

- 1. Next, cancel out the common factors.
 - a. We cancel out the 3, leaving only 2 in the numerator and a 3 in the denominator.

2

b. The remaining fraction is in it's simplest form: $\overline{3}$

Simplifying Fractions---Using the Greatest Common Factor.

- A. A fraction can be simplified two ways:
 - 1. Break each number into it's prime factor (as in XI above)
 - 2. Using the Greatest Common Factor.

12

- 3. Example: Write 40 in simplest form.
 - a. Find the prime factorization of the numerator 12 and the denominator 40.

1.
$$\frac{12}{40} = \frac{2 \cdot 2 \cdot 3}{2 \cdot 2 \cdot 2 \cdot 9}$$

2. $\frac{2\cdot 2\cdot 3}{2\cdot 2\cdot 2\cdot 9}$ has two factors in common, $2\cdot 2$.

- 3. The product $(2\cdot 2) \implies 4$, *is the greatest common factor* of the numerator and the denominator.
- 4. By canceling out the common factors, you are in affect *dividing both the numerator and denominator by the greatest common factor*.
- b. The product of the remaining factors, $\frac{3}{2 \cdot 5} \implies \frac{3}{10}$,

is the simplified form of the fractional rational number $\frac{40}{10}$